
1998 Nuclear Explosives Development Conference
Las Vegas, NV

October 25-30, 1998

Law
re

nce

Liver
m

ore

Nati
onal

Lab
ora

to
ry

UCRL-JC-132743

The Kull IMC Package

N. A. Gentile, N. Keen, J.Rathkopf

October 1, 1998

This is a preprint of a paper intended for publication in a journal or proceedings.
Since changes may be made before publication, this preprint is made available with
the understanding that it will not be cited or reproduced without the permission of the
author.

PREPRINT

This paper was prepared for submittal to the

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

NECDC October 1998

1

The Kull IMC Package

Nicholas A. Gentile, Noel Keen, Jim Rathkopf
Lawrence Livermore National Laboratory

We describe the Kull IMC package, and Implicit Monte Carlo Program written for use in A and X
division radiation hydro codes. The Kull IMC has been extensively tested. Written in C++ and
using genericity via the template feature to allow easy integration into different codes, the Kull
IMC currently runs coupled radiation hydrodynamic problems in 2 different 3D codes. A stand-
alone version also exists, which has been parallelized with mesh replication. This version has
been run on up to 384 processors on ASCI Blue Pacific.

Keywords:

 Monte Carlo

Introduction

Developing scientific codes has usually been done without much emphasis on some of the fac-
tors that the commercial software industry regards as very important goals: code reuse, ease of
use, avoiding duplication of effort. The most important reason for this is that developing algo-
rithms to solve scientific problems is so difficult that other considerations are of necessity
neglected. (A second reason is probably that we can’t sell the codes.)

But paying more attention to some of these aspects of software development could have bene-
fits for writing the next generation of scientific codes, and so using tools and concepts that have
proven valuable in commercial applications could be profitable. The Kull project is attempting to
use Object-Oriented code design, implemented with C++, to make code development easier, make
debugging less painful, and allow for different pieces of the code to be used by other codes. The
current status of the Kull IMC package demonstrates some success in achieving this.

In the following, we will give an overview of the Kull IMC packages current capabilities, dis-
cuss how using C++ has been beneficial, show results of various applications of the code, and dis-
cuss efforts to parallelize the code.

Current Capabilities of the Kull IMC package

The Kull IMC package can run radiation hydrodynamic problems in 2 different 3D codes. The
Kull hydrodynamics code has Lagrangean and ALE modes, both of which run on meshes consist-
ing of arbitrary polyhedra. This code is written in C++, and has an steerable user interface written
in Python. Kull IMC, when run in conjunction with the Kull hydro, is also controlled from
Python. The Hydra code is a 3D ALE code written in C. It has meshes consisting of linked KLM
blocks. The hexes in these blocks can have degenerate nodes

Kull IMC also exists in a stand-alone version that can run on 1, 2, and 3D orthogonal cartesian

NECDC October 1998

2

meshes and 2D RZ meshes, as well as a 3D arbitrary polyhedral mesh. This version can be run
from Python or as a standard executable.

The stand-alone version has been parallelized using mesh replication, i.e., a copy of the mesh
exists on each processor. This version has run on 32 processors of ASCI Blue Mountain, and on
up to 384 processors on ASCI Blue Pacific.

Figure 1 shows the results of an analytic Marshak wave test problem (Su and Olson 1996) run
on both an orthogonal cartesian mesh and on a mesh of the same dimensions in which each hex
has been cut up into 24 tetrahedra. Results on both meshes agree with the analytic result obtained
by diffusion theory except at the front of the wave. Here, the superluminal component of the diffu-
sion theory results causes a slight overestimate of the position of the Marshak wave. The IMC
results correctly place the foot of the Marshak wave at ct away from the source.

Figure 1. Kull IMC results for a Marshak wave test problem on both structured and unstructured
meshes.

Figure 2 shows results for the Top Hat problem of Graziani. This figure shows temperatures
for 5 points in the problem as a function of time. Results for Kull IMC, the Teton Sn package, and
another IMC code are shown. All three codes agree very well.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.01 0.1 1 10

"Cartesian"
"Tetrahedrons"

"analytic"
"ct_line"

NECDC October 1998

3

Figure 2. Temperature vs. time for 5 points in the Graziani Top Hat problem.

Figures 3 and 4 demonstrates the IMC running with the kull hydrodynamics package. The
mesh (provided by PMESH) is an unstructured grid with about 5000 zones representing a NIF
hohlraum. Temperature sources are applied to the outside in the approximate locations of the
spots that the NIF lasers will impact the hohlraum. These heated zones radiate and cause the out-
side of the target to ablate. This compresses the inside of the target. Figure 3 is a temperature plot,
showing the heated regions on the outside of the mesh. Figure 4 is a density plot of the target,
showing a rarefaction on the outside as the heated exterior ablates away, and also showing com-
pression of the interior.

0.4

0 .3

0 .2

0 .1

T
 (

ke
V

)

1 0
- 3

1 0
- 2

1 0
- 1

1 0
0

1 0
1

1 0
2

t (sh)

 IMC
 Sn
 Kull IMC

NECDC October 1998

4

Figure 3. Temperature plot of hohlraum surface.

Figure 4. Density plot of target in NIF hohlraum, showing rarefaction and compression waves.

rarefaction

compression

NECDC October 1998

5

Figure 6 shows a radiation hydrodynamics problem run with Hydra. In this problem, a corner
of a cube is heated, which launches a shock into the material. The ALE hydro allows the mesh to
distort but does not allow it to tangle.

Figure 6. Density plot of a radiation driven shock in the Hydra code.

Use of C++ in the Kull IMC Package

Using Object-Oriented C++ has helped immensely in allowing the Kull IMC package to run
on different mesh types with different dimensionality and in coupling the Kull IMC package to
different hydrodynamics codes. There are two main features of C++ that make this easier than it
would be in a non-object-oriented language. The first is the ability to use objects themselves. The
second is templating.

Objects are collections of functions and data that collectively provide some kind of behavior.
Objects are a very convenient way of providing an interface between the IMC and different
aspects of the code we are trying to link to. For example, codes can have very different meshes,
using very different data structures to represent very different ideas about the types of allowable
zones, faces, etc. Whatever the features of the meshes, the IMC needs the same kind of things
from each one. For example, the IMC needs to have a distance to boundary function to track par-
ticles. For each mesh type, we can create an object that has a d_boundary(x, y, z) function that is
implemented in terms of the mesh. For the Kull mesh, we write d_boundary in terms of the com-
plex structures needed to describe the arbitrary polyhedral grid. For the hydra mesh, we can write
d_boundary in terms of the C pointers used by the hydra code. In either case, the IMC routines

NECDC October 1998

6

call the d_boundary function of the Mesh object and so are written to be totally independent of the
underlying grid.

Templates help in two ways – by providing compile time polymorphism and by allowing the
IMC code to use type information provided by the mesh.

Polymorphism means that many similar objects can be used by a piece of code in the same
way without having to specify each time which particular object is meant. That is, we do not have
to put if tests in the code every time an object is used. In our case, we want to use different meshes
without having to specify each time what the particular mesh type is. The most common way of
having polymorphism in C++ is to use virtual inheritance. However, this entails some run-time
costs; about the same as if we had used if statements to distinguish between mesh types. Tem-
plates allow us to specify at compile time which mesh type we want, and allows us to avoid the
run-time cost.

Besides providing us with cheaper polymorphic behavior, templates allow us to get informa-
tion on data types from the mesh. Quantities like density, opacity, etc. need to be stored differently
on different types of meshes. For example, density may be a simple array on a 1D mesh, and may
be a more complicated structure on a mesh composed of blocks merged together. In order to write
the IMC code in a manner that is independent of the data type, we use templates to base the type
on the mesh type. Rather than having to commit to a certain data type, we use the type Mesh-
Type::Field, which the complier resolves at compile time to be the appropriate entity to hold data
on that mesh. Using templates this way is very important in allowing the Kull IMC package to be
used with different types of meshes.

Example of Parallel Performance

The parallel version of the Kull IMC package shows good performance on many processors.
As an example of a parallel run, we show results for a Nova hohlraum. The Nova laser has 10
beams, which causes 5 hot spots on each side of a hohlraum. Because current codes are only 2D,
they model the hot spots as a ring. This causes the illumination of the target to be smoother in the
simulation than it is in reality. A 3D calculation, done in parallel on 32 processors of ASCI Blue
Mountain, shows that the target illumination has a 5-fold symmetry, which 2D calculations cannot
model.

NECDC October 1998

7

Figure 7. Energy deposition on surface of ablator shows 5-fold symmetry.

As we increase the number of processors, communication time becomes a larger and larger
percentage of total runtime. This causes performance to degrade. For the Kull IMC package, we
have observed only an 8% drop-off in performance while running on 384 processors of ASCI
Blue Pacific. Figure 8 shows the speed relative to 1 processor as we replicate the problem on more
and more processors. Ideally, replicating the problem would not cause any slowdown. But the
need to communicate causes some degradation in performance. As figure 8 shows, this amount is
small.

NECDC October 1998

8

Conclusion

The Kull IMC package has been tested by comparison to annulate results a, to other IMC
codes, and to other radiation transport methods. It currently is capable of running radiation hydro-
dynamics problems in 2 codes, Kull and Hydra. The stand-alone mesh replicated parallel version
has run on up to 384 processors on ASCI Blue Pacific, and shows good speed-ups. C++ and
Object-oriented techniques have proven very useful in merging the package with other codes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract No. W-7405-Eng-48.

References

Su and Olson 1996 Journal of Quantitative Spectroscopy and Radiative Transfer 56, 337-351

1.0

0 .8

0 .6

0 .4

0 .2

0 .0

S
pe

ed
 R

el
at

iv
e

to
 1

 P
ro

ce
ss

or

1 2 4 8 1 6 3 2 6 4 1 2 8 2 5 6

Number of Processors

 1e4 particles/processor
 1e5 particles/processor

Relative runtime with constant number of particles per processor

384 processors

